Tag «南京夜生活»

What Pat Summitt Did For The Game Of Basketball

Embed Code FiveThirtyEight If you’re a fan of our podcasts, be sure to subscribe on Apple Podcasts and leave a rating/review. That helps spread the word to other listeners. And get in touch by email, on Twitter or in the comments. Tell us what you think, send us hot takes to discuss and tell us why we’re wrong. Welcome to the latest episode of Hot Takedown, FiveThirtyEight’s sports podcast. On this week’s show (June 28, 2016), we discuss legendary women’s basketball coach Pat Summitt, who died Tuesday. Kate Fagan describes what she meant to generations of young women desperate to play the sport. Then, The Wall Street Journal’s Chris Herring joins us to chat about the trade of Derrick Rose to the New York Knicks, and we wonder why the Knicks never seem to acquire quality talent. Finally, Chris sticks around to talk about this year’s NBA free agents and whether the Golden State Warriors would be set up for an 82-0 season if they got Kevin Durant. Plus, a significant digit on Buddy Ryan, the NFL defensive coordinator who helped lead the New York Jets and the Chicago Bears to Super Bowl titles. He died Tuesday at the age of 85.Links to what we discuss are here:Kate Fagan tells us what Pat Summitt meant to her and generations of women basketball players.Neil Paine dives into the numbers that show Summitt built the best women’s college basketball program of all time.Gary Smith’s 1998 profile of Summitt in Sports Illustrated looks at her through the eyes of a 16-year-old college basketball prospect.In 2012, Dave Zirin asked in The Nation: Are we brave enough to say goodbye to Pat Summitt?Chris Herring wonders how Derrick Rose will fit in with the Knicks.Chris also writes that the Knicks are setting their sights on Kevin Durant now that Rose is on board.But Matt Borcas at The Ringer thinks Durant will never go to the Knicks.Neil Paine thinks a Durant-led Thunder will be a better team without Serge Ibaka.The Washington Post’s Neil Greenberg agrees.Significant Digit: 72. That’s the number of sacks Buddy Ryan’s 1984 Bears put up — the most in a single NFL season. More: Apple Podcasts | ESPN App | RSS | Embed read more

Researchers conduct firstever combustion experiment with Xrays

Explore further By using the world’s most powerful X-Ray source, the team was able to penetrate and understand how the ligaments, or strands of burning fuel, breaks up into small droplets.”We are trying to understand exactly what occurs inside the gas turbine combustor to understand how it responds to different operating conditions,” Lee said.The data gathered during this experiment will become the initial conditions for numerical simulations that will further understanding of gas turbine combustors.”We’re trying to get an understanding of the physics, which to this day we have been speculating, we can really visualize using this X-Ray source,” he said. “We want to understand what we’re doing right now, understanding the fuel impact. When Soldiers are off in a different location and they have different types of fuels, how will it impact the combustor they have?” The U.S. Army Research Laboratory’s Center for Unmanned Aircraft Systems Propulsion made an historic first with its experiment in a gas turbine combustor using X-rays. The data will help advance gas turbine engine designs for higher power density and efficiency, scientists said. Citation: Researchers conduct first-ever combustion experiment with X-rays (2018, April 13) retrieved 18 July 2019 from https://phys.org/news/2018-04-first-ever-combustion-x-rays.html The professor said in the slightly longer term, he hopes the data from the experiment will allow researchers to design more optimized combustor systems for the future.”The Advance Photon Source has spent a lot of effort over the last decade or so looking at spray-droplet breakup. And never has it been done in a live combusting environment,” Lee said. “So we made the hardware to make it happen and this is actually this first time it’s ever been done live with a combusting flow in a combustor.”Lee, while remaining a faculty member at UIUC, recently accepted an additional position as a researcher on the laboratory’s regional office in Illinois, ARL Central. The Army established ARL Central in November 2017, as an extension of its Maryland-based headquarters with the goal of leveraging regional science and technology talent. “This is the strongest X-ray source in the world,” said Dr. Tonghun Lee, an associate professor in the Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign, which recently joined forces with ARL.Lee and his graduate students, along with partners from the ARL Center for UAS Propulsion, set up shop in the U.S. Department of Energy’s Advanced Photon Source at Argonne National Laboratory in Illinois, resulting in a unique experiment, which continued through April 11.”We’re here to do spray imaging inside a gas turbine combustor as relevant to the Army,” Lee said.Lee said their experiment mimicked what happens inside a typical Army helicopter gas turbine engine.Inside a gas turbine engine, a combustor is fed high pressure air that is heated by constant pressure. After heating, the air passes from the combustor through the nozzle guide vanes to the turbine, producing thrust. Combustors play a crucial role in determining many of an engine’s operating characteristics, such as power density, fuel efficiency and levels of emissions.”We had a combustion going on, which is done for the first time ever at APS and we are imaging the spray breakup at the very tip of the injector using an X-Ray source,” he said. “Typically that region where the liquid breaks up is very dense and it’s difficult to image anything inside there.” Provided by University of Illinois at Urbana-Champaign Inside a gas turbine engine’s combustor, scientists use the world’s strongest X-ray source at the Advanced Photon Source at Argonne National Laboratory to peer inside formally unseen processes. Credit: U.S. Army photo by David McNally New method offers first look at super-cold carbon molecules “It was great to see a team of ARL, UIUC and Argonne researchers working together with the unique capability at the Advanced Photon Source to gain unprecedented insight into the fuel injection and combustion process,” said ARL Central Regional Lead Dr. Mark Tschopp. “It was so exciting to see this novel experiment firsthand because it symbolizes what ARL Central is all about—partnering to accelerate discovery and innovation for future Army applications.”The experiment was the first accomplishment of the lab’s new Center for UAS Propulsion, which kicked off a massive partnership between academia and industry. ARL held a ribbon cutting for the center April 2.”I am so pleased to perform this historic experiment right after the ribbon cutting ceremony for Center for UAS Propulsion,” said center founder Dr. Chol-Bum “Mike” Kweon, who also serves as the lab’s Propulsion Division chief. “I was thrilled watching the quality of the spray breakup processes in the gas turbine combustion in real time, which is extremely difficult to measure at this quality.”Dr. Jaret Riddick, director of the lab’s Vehicle Technology Directorate watched the experiment in person April 4.”Future Vertical Lift is one of the Army’s six Modernization priorities,” Riddick said. “Future tactical unmanned aerial vehicles will play a key role in manned-unmanned teaming for Future Vertical Lift.”Breakthroughs in small engine technology for future unmanned aerial vehicles will enable longer duration, larger payloads and silent operation, he said.”Research partnerships through the newly established Center for UAS Propulsion, such as the one we witnessed at Argonne National Lab, will make these breakthroughs possible in support of the Army modernization priority for Future Vertical Lift ,” he said. Team members from the U.S. Army Research Laboratory’s Center for Unmanned Aircraft Systems Propulsion conduct an using powerful X-rays to see inside a gas turbine combustor during ignition. Researcher hope to use the data to optimize engine efficiency. Credit: U.S. Army photo by David McNally This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. read more